LAKE LANDFILL

EMISSIONS ANALYSIS FROM FLARE COMBUSTION

A. INLET CONDITIONS

Gas Concentration:

Methane	60%	
Carbon Dioxide	40%	
Non-methane Hydrocarbons	203	ppm
Sulfur Compounds	47	ppm

Gas Flow

4x10⁶ CFD

EPA Region 5 Records Ctr.

353996

B. EMISSIONS CALCULATIONS

Assumptions:

- 1. Methane combusion efficiency of 99.8 minimum is assumed.*
- 2. 95% combustion efficiency is assumed for trace hydrocarbons.
- 3. Unburned methane is assumed to produce carbon monoxide.
- 4. Balanced equations for 1 & 2 above are:

a.
$$CH_4 + CO_2 + 2O_2 + 7.5N_2 \Rightarrow 2CO_2 + 2H_2O + 7.5N_2$$

b.
$$CH_4 + CO_2 + 3/2O_2 + 5.6N_2 \Rightarrow CO + 2H_2 + 5.6N_2$$

Mass Calculation: (#/day)

Mass calculations were determined using the following equation:

#/day = (inlet concentration) x (gas density) x (flow)

Gas densities are at 60° F and 760 millimeters Hg pressure. Gas concentrations are based on typical landfill gas analysis. Flow is based on maximum capacity at the flare station of 4.0×10^{6} cfd.

Component:/Mass Calculation

CH₄: (.60) (.0423#/CF) ($4 \times 10^6 \text{CFD}$) = 1.01 $\times 10^5 \text{#/day}$ CO₂: (.40) (.1140#/CF) ($4 \times 10^6 \text{CFD}$) = 1.82 $\times 10^5 \text{#/day}$

RECEIVED

Sulfur: (4.7×10^{-5}) (.20 % / CF) $(4 \times 10^{6} CFD) = 37.6 \% / day$

SEP -9 1987

Hydrocarbons: (2.10^{-4}) (.2271 # / CF) $(4 \times 10^6 \text{CFD}) = 181.6 \# / \text{day}$

IEPA/DLPC

Combustion Analysis

CO₂:
$$(.9983)$$
 $(1.01 \times 10^5 \#/d \text{ CH}_4)$ = $\frac{2\text{CO}_2 \#/d}{44 \text{ (mol wt. of CO}_2)}$ = $1.39 \times 10^5 \#/d \text{ ay CO}_2$ H₂O: $(.99)$ $(1.01 \times 10^5 \#/d \text{ CH}_4)$ = $\frac{2\text{H}_2 \text{O} \#/d}{18 \text{ (mol wt. of H}_2 \text{O})}$ = $5.62 \times 10^4 \#/d \text{ ay H}_2 \text{O}$

^{*} Based on a report prepared for the Chemical Manufacturers Association and USEPA entitled: "A Report On A Flare Efficiency Study, March, 1983."

CO:
$$(.0017) (1.01 \times 10^5 \#/d \text{ CH}_4) = \frac{\text{CO}\#/d}{16 (\text{mol wt. of CH}_4)} = \frac{\text{CO}\#/d}{28 (\text{mol wt. of CO})}$$

$$= 3x10^2 \# CO/day$$

$$= \frac{SO_2/day}{64 \text{ (mol wt. } SO_2)}$$

 $= 48 \# / day SO_2$

Hydrocarbons: (.05) (181.6 # / d) = 9.1 # / day

 CH_4 : (.0017) (1.01x10⁵#/day) = 171.7#/day

C. EMISSIONS SUMMARY

Component	#/Day	Tons/Year
co_2	1.39x10 ⁵	25,367
СО	$3x10^{2}$	54.75
H ₂ O	5.62x10 ⁴	10,256
so ₂	48	8.7
НС	9.1	1.66
Methane	171.7	31.33